Dynamic causal modeling with neural fields
نویسندگان
چکیده
The aim of this paper is twofold: first, to introduce a neural field model motivated by a well-known neural mass model; second, to show how one can estimate model parameters pertaining to spatial (anatomical) properties of neuronal sources based on EEG or LFP spectra using Bayesian inference. Specifically, we consider neural field models of cortical activity as generative models in the context of dynamic causal modeling (DCM). This paper considers the simplest case of a single cortical source modeled by the spatiotemporal dynamics of hidden neuronal states on a bounded cortical surface or manifold. We build this model using multiple layers, corresponding to cortical lamina in the real cortical manifold. These layers correspond to the populations considered in classical (Jansen and Rit) neural mass models. This allows us to formulate a neural field model that can be reduced to a neural mass model using appropriate constraints on its spatial parameters. In turn, this enables one to compare and contrast the predicted responses from equivalent neural field and mass models respectively. We pursue this using empirical LFP data from a single electrode to show that the parameters controlling the spatial dynamics of cortical activity can be recovered, using DCM, even in the absence of explicit spatial information in observed data.
منابع مشابه
Modeling and Control of Gas Turbine Combustor with Dynamic and Adaptive Neural Networks (TECHNICAL NOTE)
متن کامل
Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملA Dynamic Fuzzy-cognitive-map Approach Based on Random Neural Networks
A fuzzy cognitive map is a graphical means of representing arbitrarily complex models of interrelations between concepts. The purpose of this paper is to describe a dynamic fuzzy cognitive map based on the random neural network model. Previously, we have developed a random fuzzy cognitive map and illustrated its application in the modeling of processes. The adaptive fuzzy cognitive map changes ...
متن کاملDynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers
In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...
متن کاملDynamic Random Fuzzy Cognitive Maps
A fuzzy cognitive map is a graphical means of representing arbitrary complex models of interrelations between concepts. The purpose of this paper is to describe a dynamic/adaptive fuzzy cognitive map based on the random neural network model. Previously, we have developed a random fuzzy cognitive map and illustrated its application in the modeling of processes. The adaptive fuzzy cognitive map c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 59 شماره
صفحات -
تاریخ انتشار 2012